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Abstract

Background—Idiopathic pulmonary fibrosis (IPF) with co-existent emphysema, termed
combined pulmonary fibrosis and emphysema (CPFE) may associate with reduced forced vital
capacity (FVC) declines compared to non-CPFE IPF patients. We examined associations between
mortality and functional measures of disease progression in two IPF cohorts.

Methods—Visual emphysema presence (>0% emphysema) scored on computed

tomography identified CPFE patients (CPFE:non-CPFE: derivation cohort=317:183; replication
cohort=358:152), who were subgrouped using 10%, or 15% visual emphysema thresholds, and
an unsupervised machine learning model considering emphysema and ILD extents. Baseline
characteristics, 1-year relative FVC and diffusing capacity of the lung for carbon monoxide
(DLco) decline (linear mixed-effects models), and their associations with mortality (multivariable
Cox regression models) were compared across non-CPFE and CPFE subgroups.

Results—In both IPF cohorts, CPFE patients with 210% emphysema had a greater smoking
history and lower baseline DLco compared to CPFE patients with <10% emphysema. Using
multivariable Cox regression analyses in patients with =10% emphysema, 1-year DLco decline
showed stronger mortality associations than 1-year FVVC decline. Results were maintained in
patients suitable for therapeutic IPF trials and in subjects subgrouped by =15% emphysema and
using unsupervised machine learning. Importantly, the unsupervised machine learning approach
identified CPFE patients in whom FVC decline did not associate strongly with mortality. In non-
CPFE IPF patients, 1-year FVC declines =5% and =10% showed strong mortality associations.

Conclusion—When assessing disease progression in IPF, DLco decline should be considered in
patients with >10% emphysema and a =5% 1-year relative FVVC decline threshold considered in
non-CPFE IPF patients.

Keywords

Combined pulmonary fibrosis and emphysema; mortality surrogates; idiopathic pulmonary
fibrosis; computed tomography

Introduction

Emphysema is a common pulmonary finding on computed tomography (CT) imaging of
idiopathic pulmonary fibrosis (IPF) patients [1]. The term combined pulmonary fibrosis
and emphysema (CPFE) describes a potential clinical endotype characterized by the
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coexistence of upper lobe-predominant emphysema, lower lobe-predominant fibrosis and
relative preservation of forced vital capacity (FVC) in the context of a disproportionately
reduced gas transfer (diffusing capacity of the lung for carbon monoxide, DLco) [1-3].
CPFE is highly heterogeneous in terms of the distribution and relative extents of fibrosis and
emphysema seen on CT.

CPFE patients are typically categorised using visual thresholds of emphysema extent:
>0%, =5%, =10%, =15%. It has been suggested that a subset of CPFE patients (=15%
emphysema) may manifest slower rates of FVC decline than CPFE patients with lesser
amounts of emphysema [4]. Despite the importance of fibrosis in driving FVC decline,
fibrosis extent hasn’t been considered in prior definitions of CPFE [5]. Categorisation of
CPFE patients using a combination of fibrosis and emphysema is possible using data-driven
machine learning methods. SuStaln [6] is a machine learning method initially proposed
for subtyping and modelling disease progression behaviour in dementia, which has been
extended to COPD [7]. SuStaln can identify disease subtypes with different progression
patterns and can reconstruct their progression trajectories from cross-sectional data. A by-
product of this approach would be the identification of patients in different CPFE subtypes
who may benefit from different forms of disease progression monitoring, which in turn
could inform clinical trial design.

In our study, we hypothesised that FVC decline, the most widely used surrogate for
mortality prediction in IPF might show limited associations with mortality in independent
CPFE populations with 210% and =15% emphysema scored visually on CT imaging, and in
CPFE subgroups categorised by considering relative extents of interstitial lung disease (ILD)
and emphysema. We further hypothesised that DLco decline could represent an alternative
surrogate for mortality in IPF patients with CPFE [5, 8].

Two independent IPF cohorts diagnosed by multidisciplinary teams were studied. Patients
with infection or cancer on baseline CT or who died within 3 months of the baseline CT
were excluded from the study. We studied two IPF cohorts so as to test whether DLco could
be a consistent mortality surrogate in independent IPF populations. The derivation cohort
(n=500) derived from three centres: Ege University Hospital, 1zmir, Turkey; St Antonius
Hospital, Nieuwegein, Netherlands; Pisa University Hospital, Italy. The replication cohort
(n=510) derived from four centres: University Hospital Southampton NHS Foundation Trust,
UK; University College London Hospitals NHS Foundation Trust, UK; University Hospitals
Leuven, Belgium; Australian IPF registry, Australia. CONSORT diagrams for derivation
cohort and replication cohort are shown in Supplementary Figure 1. Approval for this
retrospective study of clinically indicated pulmonary function and CT data was obtained
from the local research ethics committees and Leeds East Research Ethics Committee:
20/YH/0120.
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Visual CT Scoring of Emphysema and ILD

Emphysema extent and fibrosis extent were visually scored in 6 lobes (the lingula was
counted as the sixth lobe) by an experienced thoracic radiologist (JJ) with 16 year’s
experience. Fibrosis extent comprised the sum of ground glass density (with overlying
reticulation or traction bronchiectasis), reticulation, traction bronchiectasis and honeycomb
cysts. Lobar extents of emphysema/fibrosis were summed and divided by 6 to obtain a lung
percentage of emphysema/fibrosis.

For the purposes of this study, a patient was defined as having CPFE is they had any
emphysema on a CT. CPFE patients were subdivided in a primary analysis into those

>10% emphysema (Figure 1), and in a secondary analysis into those =15% emphysema. CT
imaging in a random subset of 122 subjects was evaluated independently by two radiologists
(GC and JB: 3 and 4 years imaging experience respectively) to provide an estimate of
observer variation for semi-quantitative scores of emphysema extent.

Statistical analysis

Data are presented as means and standard deviations unless otherwise stated. Two-sample
t-tests were used for continuous variables, and chi-squared tests were used for categorical
variables. Kaplan-Meier survival plots and the log-rank test were used to test for differences
in survival between non-CPFE IPF patients, and CPFE patients in different subgroups
(using emphysema thresholds or SuStaln subtype) in both IPF cohorts. Subanalyses were
performed for patients satisfying lung function criterion for inclusion into IPF therapeutic
trials (percent predicted DLco >30%, percent predicted FVVC >50%, and forced expiratory
volume in the first second/FVC ratio >0.7).

FVC/DLco Decline Modelling

Linear mixed-effects (LME) models estimated absolute and relative 1-year FVC decline and
1-year DLco decline. The trajectory of FVC for patients from different countries/centres was
modelled separately by using the LME model. Fixed effects included: age at baseline CT
date, sex, smoking history (never vs. ever), antifibrotics (never vs. ever), baseline percent
predicted FVVC (nearest to and within 3 months of baseline CT date), and time since
baseline CT imaging date. Each subject had a random intercept and random slope. FVC
measurements between baseline FVC date and 18 months after baseline CT date were used
to build the LME model. Subjects were required to have had an FVC measurement within

3 months of the CT, and at least one further follow up FVC measurement to be included

in this analysis. Absolute and relative 1-year FVC declines were calculated. For relative
1-year FVC decline, each follow-up FVC measurement (mls) was divided by baseline FVC
(mls) and multiplied by 100 [9] and LME-predicted relative FVC percentage calculated at 1
year. 1-year DLco decline was estimated using similar methods, with longitudinal DLco and
baseline percent predicted DLco used in the LME models. LME models were implemented
with MATLAB (version R2019b, Mathworks, Natick, Massachusetts, US).
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Machine Learning Delineation of CPFE Subtypes

Only patients with emphysema scored visually in any lobe were considered for SuStaln
CPFE analysis. Using baseline data alone, SuStaln can identify disease subtypes with
distinct progression trajectories that describe the evolution of multiple biomarkers. The
progression trajectory for an individual disease subtype follows a linear z-score model, in
which each biomarker is modelled as a monotonically increasing piece-wise linear function
[6, 7]. Specifically, we used visually estimated fibrosis and emphysema extents within each
of the six lobes as biomarkers (12 biomarkers in total). The extent of each biomarker was
divided by the interobserver variability (calculated using the single determination standard
deviation) of the biomarker as scored by two radiologists resulting in corresponding z-scores
for the SuStaln model. The z-score indicates an abnormal level of a biomarker and the
piece-wise linear trajectory of each biomarker describes a continuous accumulation of
abnormality: z-score = 0, 1, ..., Zmax- Zmax IS the maximum z-score a biomarker can reach

at the end stage of a disease and this maximum score can be a different number in different
biomarkers. If we define the transition of a biomarker from one z-score to the next z-score as
a z-score event, the trajectory of disease progression is a sequence of different z-score events
in the various biomarkers under consideration.

The process of fitting of the SuStaln model aims to find the optimal number of subtypes of
disease, the proportion of each subtype within the population, and the order of z-score events
for all biomarkers in each disease subtype. The trained SuStaln model can then predict
probabilities that an individual belongs to a particular subtype and stage [6].

An underlying assumption of SuStaln is that the biomarkers will show a monotonic increase.
As emphysema develops slowly, and IPF patients have a short survival time, it is less

likely that an IPF patient without emphysema will develop emphysema during their lifetime.
Accordingly, to avoid breaking the assumption that a biomarker will show a monotonic
increase, only patients with emphysema scored visually in any lobe were considered for
SuStaln CPFE analysis.

Cox Regression Modelling

In multivariable mixed-effects Cox regression models associations of FVC decline and
DLco decline with mortality were examined across IPF subtypes. Models were adjusted for
age, sex, smoking history (never vs. ever), antifibrotic use (never vs. ever), and baseline
disease severity (using percent predicted DLco at baseline). Differences between different
countries/centres in each cohort were modelled by assigning a random intercept for each
centre. Cox models were used with a minimum of 8 outcome events per predictor covariate
[10]. Cox regression models were tested for proportional hazards assumption using the
Schoenfeld residuals test. The Concordance index (C-index) compared the goodness of

fit of Cox regression models. P-values <0.01 were considered statistically significant. All
mixed-effects Cox regression analyses were implemented by R (version 4.0.3 with Rstudio
version 1.3.1093, Rstudio, Boston, Massachusetts, US).
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Group Comparisons for FVC and DLco Decline

Results

To investigate the impact of emphysema on FVC and DLco decline in the different IPF
subgroups (non-CPFE patients; CPFE patients classified using emphysema thresholds or
SuStaln), proportions of patients with 25% and >10% relative FVVC decline in 1-year

and =10% and =15% relative DLco decline in 1-year were calculated. Mean absolute

1-year FVC decline (mls) and DLco decline (mls/min/mmHg) were also calculated for

the three subgroups. Analyses were performed in both IPF cohorts, with subanalyses in
subjects fulfilling criteria for inclusion into IPF therapeutic trials. Chi-squared tests with
Bonferroni-adjusted p-values were calculated for categorical variables. A one-way ANOVA
test examined differences in mean absolute FVVC decline (mls) with a post hoc Tukey Honest
Significant Difference (HSD) test used to compare pairwise differences in subtypes.

Baseline Characteristics

317/500 (63%) IPF patients in the derivation cohort had emphysema and were defined as
CPFE compared to 358/510 (7%) IPF patients with CPFE in the replication cohort. CPFE
patients were more likely to be smokers, had a higher percent-predicted FVC and lower
percent-predicted DLco than non-CPFE patients.

Across the derivation and replication cohorts, CPFE patients with =10% emphysema
comprised greater numbers of smokers and had lower baseline percent predicted DLco
compared to CPFE patients with <10% emphysema (Table 1). To power analyses, patients
in both IPF cohorts fulfilling entry criteria for therapeutic trials were combined into a single
cohort (Supplementary Table 2). Baseline characteristics of CPFE patients with emphysema
above or below 15% in derivation and replication cohorts are shown in Supplementary Table
3-4.

The interobserver variation in visual emphysema scores for the subset of 122 cases scored
by two radiologists, measured using Cohens Kappa for 0%, 5%, 10%, and 15% emphysema
thresholds was: 0.2, 0.5, 0.61, 0.69, respectively demonstrating substantial agreement for a
10% visual emphysema threshold.

Machine Learning Model

Machine learning analyses of ILD and emphysema extents in the CPFE population identified
two distinct CPFE subtypes. One subtype (Fibrosis-Dominant CPFE, 60% of derivation
cohort CPFE patients and 61% of replication cohort CPFE patients) had much more
extensive fibrosis at an early stage followed by a later emergence of emphysema (Figure

2). The second subtype (Matched-CPFE) demonstrated fibrosis and emphysema worsening
together, with later stages showing relatively more extensive emphysema and less fibrosis
compared to the Fibrosis-Dominant CPFE subtype (Supplementary Table 5 and 6).

PFT Decline Analyses

Fewer CPFE patients with =10% emphysema reached the =10% or =5% 1-year FVVC decline
thresholds and had lower mean absolute FVC declines, though differences between groups
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did not reach statistical significance (Table 2). Greater numbers of CPFE patients with
>10% emphysema demonstrated 1-year DLco declines =15%, though again results did
not reach statistical significance (Table 3). Similar trends were found in the replication
cohort, patients fulfilling criteria to enter IPF therapeutic trials (Table 2 and 3), and when
CPFE was categorized using a 15% emphysema threshold or machine learning analyses
(Supplementary Table 7 and 8).

Survival Analyses

Kaplan-Meier survival plots (Figure 3) demonstrated that in both cohorts, non-CPFE and
CPFE patients with <10% emphysema had a significantly better prognosis than CPFE
patients with >10% emphysema. Results were maintained in patients fulfilling criteria to
enter IPF therapeutic trials and were similar when CPFE patients were separated using a
15% emphysema threshold or machine learning analyses (Supplementary Figure 2 and 3).

Mortality Analysis for Visual Emphysema Thresholds

Multivariable Cox regression models adjusted for patient age, sex, smoking history

(never vs. ever), antifibrotic use (never vs. ever), and baseline percent predicted DLco
showed that in non-CPFE patients, 5% and 10% 1-year FVC decline thresholds showed
strong associations with mortality in derivation (5% 1-year F\VVC decline: HR=3.82, 95%
Cl=2.10-6.95, p<0.0001; 10% 1-year FVC decline: HR=4.26, 95% CIl=2.42-7.50, p<0.0001)
and replication (5% 1-year FVC decline: HR=2.72, 95% CI=1.43-5.19, p=0.002; 10%
1-year FVC decline: HR=2.73, 95% CI=1.37-5.44, p=0.004) cohorts (Table 4 and 5).
Associations with mortality were maintained in patients fulfilling criteria to enter IPF
therapeutic trials (5% 1-year FVC decline: HR=3.27, 95% CI=2.03-5.25, p<0.0001; 10%
1-year FVC decline: HR=4.36, 95% CI=2.69-7.06, p<0.0001; Supplementary Table 9).

For CPFE patients with >10% emphysema (derivation cohort n=103/352 (29%); replication
cohort n=115/382 (30%)), in multivariable analyses, 1-year relative DLco decline showed

a stronger association with mortality than 1-year relative FVVC decline in derivation

(DLco decline: HR=1.03, 95% CI1=1.02-1.05, p<0.0001; FVC decline: HR=1.03, 95%
Cl=1.01-1.06, p=0.008) and replication (DLco decline: HR=1.03, 95% CI=1.01-1.05,
p=0.001; FVC decline: HR=1.02, 95% CI1=0.99-1.06, p=0.13) cohorts (Table 4 and 5).
When DLco thresholds were examined in CPFE patients with >10% emphysema, >15%
1-year relative DLco decline showed stronger associations with mortality than =10%

1-year relative FVC decline in derivation (=15% 1-year DLco decline: HR=2.67, 95%
Cl=1.64-4.35, p<0.0001; =10% 1-year FVC decline: HR=2.54, 95% CIl=1.42-4.54, p=0.002)
and replication (=15% 1-year DLco decline: HR=3.88, 95% Cl=2.12-7.10, p<0.0001; =10%
1-year FVC decline: HR=2.03, 95% CI=1.05-3.91, p=0.04) cohorts. In subjects eligible for
inclusion into IPF therapeutic trials (where 144/589 (24%) patients had >10% emphysema)
1-year relative DLco decline (HR=1.04, 95% CI1=1.03-1.06, p<0.0001) showed stronger
associations with mortality than 1-year relative FVC decline (HR=1.05, 95% C1=1.02-1.08,
p=0.0006) on multivariable Cox regression analyses (Supplementary Table 9). Similar trends
were observed in multivariable analyses performed in CPFE patients with 215% emphysema
(Supplementary Table 10-12).
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Mortality Analyses of Machine Learning Derived CPFE Subgroups

Trends seen for the 10% visual emphysema threshold were again replicated when

CPFE patients were separated using machine learning analyses that considered ILD

and emphysema extents. The Matched-CPFE cohort also delineated patients in whom
FVC decline proved a poor surrogate for mortality. Importantly, in the Matchead-

CPFE cohort, DLco decline, whether measured as relative decline in percent-predicted
DLco (derivation: HR=1.04, 95% CI=1.02-1.05, p<0.0001; replication: HR=1.03, 95%
Cl=1.01-1.05, p=0.001, clinical trial cohort: HR=1.04, 95% CI=1.03-1.06, p<0.0001) or

a =15% DLco threshold (derivation: HR=2.63, 95% Cl=1.54-4.52, p=0.0004; replication:
HR=4.86, 95% CI1=2.39-9.90, p<0.0001, clinical trial cohort: HR=3.61, 95% CI=2.16-6.02,
p<0.0001) remained a strong surrogate for mortality (Supplementary Table 13-15). This
was less evident for FVC decline (measured in mls) whether expressed as a continuous
relative decline percentage (derivation: HR=1.04, 95% C1=1.01-1.07, p=0.006; replication:
HR=1.02, 95% CI=0.99-1.06, p=0.23, clinical trial cohort: HR=1.06, 95% CI=1.03-1.09,
p=0.0006) or a =210% FVC decline threshold (derivation: HR=2.48, 95% CIl=1.22-5.07,
p=0.01; replication: HR=2.36, 95% C1=1.14-4.91, p=0.02, clinical trial cohort: HR=2.67,
95% Cl=1.42-5.02, p=0.002).

Discussion

Our study evaluated functional indicators of disease progression in IPF patients with
emphysema that have been the key mortality surrogates used in clinical care and therapeutic
trials. We identified three important findings across two IPF populations: Firstly, we
demonstrated the limited associations between relative FVC decline and mortality in

CPFE patients with >10% and >15% emphysema, and conversely the strong associations
with mortality for relative DLco decline in the same subgroups. Second, our machine
learning model identified a subgroup of CPFE patients where a relatively greater amount

of emphysema compared to ILD accentuated the limited associations between ILD-driven
FVC decline and mortality in these CPFE patients. Lastly, in non-CPFE patients we showed
that FVC decline is a powerful measure of IPF progression showing strong associations with
mortality at both >5% and =10% 1-year FVVC decline thresholds.

FVC decline occupies a cardinal role in the assessment of disease progression in IPF as

it has been shown to be a strong surrogate for mortality [11]. The demonstration however
that FVC decline may be curtailed in IPF patients with =15% [4] emphysema raised the
question of whether FVC decline remained a surrogate for mortality in IPF patients with
more extensive emphysema. Only one other study, by Schmidt et al [8], which was relatively
underpowered (n=42) for subjects with moderate/severe emphysema (defined as emphysema
at least as extensive as ILD), addressed this question and found that FVVC decline did not
associate with mortality at 12 months. Other studies considering IPF patients regardless of
emphysema presence/extent have shown strong associations between mortality and other
functional decline measures/thresholds including: DLco decline thresholds of >10% [12]
and 15% [13], and FVC declines of =5% [14-16].

An explanation for the poor association between FVC decline and mortality in patients
with more extensive emphysema may relate to the impact of fibrosis when encroaching
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on areas of emphysema. Emphysematous regions of lung commonly demonstrate air
trapping as thickened small airways collapse on expiration. Fibrotic processes however can
irreversibly pull open small airways. The supervening traction bronchiolectasis can result
in emphysematous airspaces being ventilated, thereby artificially preserving FVC. In IPF
patients with emphysema, as fibrosis progresses and extends to involve the upper zones of
the lungs, more emphysematous lung may become incorporated into the expiratory lung
volume over time. A consequence may be greater heterogeneity in expiratory lung volumes,
superimposing considerable noise to an overarching pattern of progressive FVC decline.
This effect is likely to be more pronounced in patients with more extensive emphysema.

One limitation in prior definitions of CPFE has been the focus on emphysema extent alone
as the sole arbiter for categorising a CPFE endotype. A recent ATS/ERS/ALAT/JRS research
statement identified a 5% emphysema threshold as a research definition for CPFE patients,
whilst suggesting a 15% emphysema threshold for classifying a CPFE clinical syndrome

[5]. In our study we found that a 10% emphysema threshold (which showed substantial

CT observer agreement) may represent a better cut-off than a 15% emphysema threshold to
identify a CPFE population disenfranchised by the use of FVVC as a sole measure of disease
progression.

A further challenge with CPFE definitions being determined by emphysema thresholds

is that FVC decline is primarily driven by ILD progression rather than emphysema
progression. Our unsupervised machine learning model (SuStaln) considered both fibrosis
and emphysema when subtyping patients and replicated the strong association of DLco
decline and mortality in patients with more extensive emphysema seen in CPFE patients
with 210% emphysema. By considering ILD extent in relation to emphysema extent, the
SuStaln model delineated of a subgroup of CPFE patients, fulfilling criteria to enter IPF
therapeutic trials, where FVC decline did not associate strongly with mortality.

Prior studies have shown associations between DLco decline and mortality in IPF [8, 12,

13, 17-19] but have not analysed the impact of emphysema on DLco trends. DLco decline
has generally been less consistent in its links with mortality than FVC decline in IPF
patients [20]. Yet DLco decline may have particular relevance in subsets of IPF patients
[21]. For example, the strong mortality signal for DLco decline seen in CPFE patients

with more extensive emphysema could reflect progressive localised pulmonary hypertension
complicating CPFE patients with more extensive emphysema [22, 23]. Our study findings
suggest that in IPF patients with extensive emphysema a composite endpoint of FVC decline
>10% or DLco decline =215% should be considered when assessing disease progression.

There were limitations to the current study. A single observer scored the CTs for fibrosis
and emphysema. For studies to be clinically meaningful, they have to be suitably powered,
and this requires the careful evaluation of large IPF populations. This is challenging with
a current limited availability of radiologists and would occur more commonly in specialist
ILD centres. The single read of CTs in this study aligns with other large scale IPF studies
where pragmatic considerations required assessment of CTs by a single specialist [24,

25]. Similar functional measures and IPF subgroups proportions across both study cohorts
provide reassurance for the validity of the visual CT scores. The improvement in observer
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agreement at higher emphysema thresholds (even amongst less experienced radiologists)
adds confidence to the reliability of visual scores at an emphysema threshold of 1%.

This also aligns with prior work [26] demonstrating improved interobserver agreement at
emphysema extent categories of 10% and 15% versus 0% and 5%. The computer algorithm
SuStaln is not routinely available to clinicians at present, but was used to show the impact
of considering ILD extent in the classification of CPFE subtypes. There was also missing
data for longitudinal PFTs, reducing the sample size of both cohorts in the analyses of lung
function decline. No imputation was performed however as we wanted the analyses to reflect
the recorded functional status of the patients. Lastly, whilst we would have liked to have
fully automated our machine learning model, using computationally quantified emphysema
as an objective measure of disease, no existing automated tools can reliably distinguish
emphysema from honeycombing and traction bronchiectasis.

In conclusion, annual relative DLco decline was shown to be a better mortality surrogate for
patients with more than 10% emphysema than relative FVC decline. Findings were validated
by a data-driven machine learning method that considers emphysema and ILD extents when
defining patients with more extensive emphysema. These observations may be useful in
clinical trial design to identify subjects where FVC decline is a poor disease progression
measure. A 5% 1-year relative FVC decline threshold however was found to be a strong
mortality indicator in non-CPFE IPF patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Computed tomography images of three subjects with 10% emphysema scored visually.
A 59-year-old male 5-pack-year ex-smoker with axial (a) and coronal (b) imaging

shows extensive upper lobe paraseptal emphysema (black arrows) and also centrilobular
emphysema (white arrows) in a predominantly upper lobe distribution. Fibrosis with
traction bronchiectasis, ground glass opacification and reticulation is seen in a lower zone
predominant distribution. Figure c+d show respectively axial and coronal images of mixed
paraseptal (black arrows) and centrilobular emphysema (white arrows) in a 60-year-old
male 17-pack-year ex-smoker. Axial images in a 72-year-old male 20-pack-year ex-smoker
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demonstrate a predominantly paraseptal distribution of emphysema (black arrows) in the
upper (e) and lower (f) lobes with minimal centrilobular emphysema (white arrow).
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Figure 2.
Identification of CPFE subtypes and subtype disease progression modelled by SuStaln in

the derivation cohort (a) and replication cohort (b). The rows show progression patterns

of fibrosis extent (in red) and emphysema extent (in blue) in 6 lung zones (upper, middle
and lower) in the two CPFE subtypes identified by SuStaln: Fibrosis-Dominant CPFE and
Matched-CPFE. Seven disease stages are highlighted, expressed as z-score intervals. In the
Fibrosis-Dominant CPFE subtype comprising 60% of the derivation cohort and 60% of the
replication cohort (top two rows in (a) and (b)), fibrosis is more severe at an early stage
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followed by a later emergence of emphysema. In the Matched-CPFE subtype comprising
40% of the derivation cohort and 39% of the replication cohort (bottom two rows in (a) and
(b)), fibrosis and emphysema get worse together, with later stages showing relatively more
extensive emphysema and less fibrosis compared to the Fibrosis-Dominant CPFE subtype.
The upper lobe predominance of emphysema seen at early disease stages no longer exists
in the later stages of the Matched-CPFE subtype. CPFE: combined pulmonary fibrosis and
emphysema. This figure was produced with the assistance of Servier Medical Art (https://
smart.servier.com).
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Kaplan-Meier curves of non-CPFE IPF patients (red), CPFE patients with emphysema
<10% (green) and CPFE patients with emphysema =10% (blue) in the derivation cohort (a),
the replication cohort (b), combined derivation and replication cohort patients qualifying for
therapeutic trials (c). Log-rank tests show a significant difference in mortality between the
three subtypes in all three analyses.
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Baseline characteristics of non-CPFE IPF patients and CPFE patients with emphysema

Table 1

below or above 10% in the derivation and replication cohorts.

Cohort Varizble pationts. | crmphy sema <1096 | emphytema +106
Subjects (%) 183 (36.6) 174 (34.8) 143 (28.6)
Age (years) 67.8+9.2 66.9+9.1 65.049.1
Male (%) 110/183 (60.1) 143/174 (82.2) 132/143 (92.3)
o Never-fever-smokers (ever %) | 92/91 (49.7) 38/133 (77.8) * 8/134 (94.4) **
Derivation cohort
Visual fibrosis extent (%) 38.7£14.6 36.3+14.1 40.8+13.5
Visual emphysema extent (%) | 0+0 4.8+2.3 20.4+8.8
FVC (% predicted, n) 77.1+20.8 (158) | 80.11+20.2 (150) 79.1+21.9 (122)
DLco (% predicted, n) 52.2+16.5 (151) | 51.6+15.1 (138) 40.4+13.33 (116)
Subjects (%) 152 (29.8) 206 (40.4) 152 (29.8)
Age (years) 71.6+8.4 71.948.3 70.5+8.0
Male (%) 96/152 (63.2) 168/206 (81.6) 128/152 (84.2)
o Never-/ever-smokers (ever %) | 78/74 (48.7) 51/152 (74.9) ' 22/129 (85.4) 77
Replication cohort
Visual fibrosis extent (%) 34.0+£14.9 34.6+12.8 37.8+12.4
Visual emphysema extent (%) | 0+0 49+24 21.1+11.1
FVC (% predicted, n) 84.5+21.1 (137) | 84.4+20.5 (184) 86.6+18.9 (137)

DLco (% predicted, n)

55.2+15.1 (121)

51.2+16.0 (176)

40.7+11.2 (126)

FVC: forced vital capacity; DLco: diffusing capacity of the lung for carbon monoxide; CPFE: combined pulmonary fibrosis and emphysema; IPF:

idiopathic pulmonary fibrosis; * 171 patients and ** 142 patients had smoking data available in derivation cohort;

* 171 patients and ** 142 patients had smoking data available in derivation cohort;

T 203 patients and 1151 patients had smoking data available in replication cohort.
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FVC decline analysis in different subgroups of IPF patients.

Table 2

Page 20

Relative 1-year FVC decline

Absolute 1-year FVC decline

FVCdata _(%) (mls)
available
Cohort Subgroup cases/all Number of Number of ?i?fof/grgr:c%f
case >10% ) >5% ) Mean between
(proportion)  (proportion) subgroups
Non-CPFE 150/183 51 (34%) 81 (54%) 163.50 -117.78~84.55 "
Derivation  pre yith emph 10% 136/174  30(28.68%) 69 (50.74%)  180.12 #
cohort with emphysema <10% (28.68%) (50.74%) . -39.83~171.96
CPFE with emphysema 210%  115/143 27 (23.48%) 49 (42.61%) 97.43 -190.92~25.55"
Non-CPFE 124/152 24 (19.35%) 50 (40.32%) 110.65 -85.47~41547
Replication  CprE with emphysema<10% 1701206 37 (2176%)  75(44.12%) 13262 44.55-90.45%
CPFE with emphysema 210%  130/152 21(16.15%) 44 (33.85%)  87.71 -10757~17.74"
Non-CPFE 222/236 59 (26.58%) 105 (47.30%) 142.94 -86.52~42.79
Combined
drug trial CPFE with emphysema <10%  240/261 57 (23.75%) 113 (47.08%) 164.81 -42.64~104.13%
cohort
CPFE with emphysema =10%  150/157 29 (19.33%) 56 (37.33%) 112.19 -124.88~19.65"

The proportions of patients with more than 10% and 5% relative 1-year FVC decline, and the mean of absolute 1-year FVVC decline in derivation,
replication cohorts and combined drug trial cohort (patients fulfilling criteria to enter IPF therapeutic trials in derivation and replication cohorts) are
shown in this table. The number of subjects with available F\VC decline versus the number of all subjects belonging to a certain subgroup is shown
in n/n format. We also compared a) non-CPFE with CPFE with emphysema <1%, b) non-CPFE with CPFE with emphysema =1%, c¢) CPFE with
emphysema =10% and CPFE with emphysema <1%, in terms of the relative decline and absolute decline. We use *, # and " to denote comparison
a), b), c) respectively in the table. None of the comparisons showed statistically significant differences. CPFE: combined pulmonary fibrosis and
emphysema; IPF: idiopathic pulmonary fibrosis; FVC: forced vital capacity; Cl: confidence interval.
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Table 3

DLco decline analysis in different subgroups of IPF patients.

Page 21

Relative 1-year DLco decline

Absolute 1-year DLco decline

DLcodata (%0) (mls/min/mmHg)
Cohort Subgroup ?X?e"s"}‘;'f Number of Number of 3?:%%;]‘
case >15% . >10% . Mean between
(proportion)  (proportion) subgroups
Non-CPFE 132/183 52 (39.39%) 73 (55.30%)  645.39 -881.03~129.87
Derivation cohort CPFE with emphysema <10%  125/174 42 (33.60%) 60 (48%) 1020.97 -752.33~301.34%
CPFE with emphysema 210%  107/143 42 (39.25%) 59 (55.14%) 870.88 -683.49~383.31"
Non-CPFE 108/152 30 (27.78%)  43(39.81%)  769.10 -228.07~536.20 "
Replication cohort CPFE with emphysema <10%  161/206 38 (23.60%) 67 (41.61%) 615.04 -222.08~597.87%#
CPFE with emphysema 210%  117/152 42 (35.90%) 64 (54.70%) 581.21 -407.07~339.41"
Non-CPFE 213/236 71(33.33%) 100 (46.95%) 748.91 -450.51~220.82
Combined drug trial cohort  CPFE with emphysema <10%  238/261 66 (27.73%) 112 (47.06%) 863.75 -448.18~316.55%
CPFE with emphysema =10%  146/157 54 (36.99%) 80 (54.79%) 814.72 -423.13~325.08"

The proportions of patients with more than 15% and 10% relative 1-year DLco decline, and the mean of absolute 1-year DLco decline in derivation,
replication cohorts and combined drug trial cohort (patients fulfilling criteria to enter IPF therapeutic trials in derivation and replication cohorts) are
shown in this table. The number of subjects with available DLco decline versus the number of all subjects belonging to a certain subgroup is shown
in n/n format. We also compared a) non-CPFE with CPFE with emphysema <10%, b) non-CPFE with CPFE with emphysema 210%, c) CPFE with
emphysema =10% and CPFE with emphysema <10%, in terms of the relative decline and absolute decline. We use *, # and " to denote comparison
a), b), c) respectively in the table. None of the comparisons showed statistically significant differences. CPFE: combined pulmonary fibrosis and
emphysema; IPF: idiopathic pulmonary fibrosis; DLco: diffusing capacity of the lung for carbon monoxide; CI: confidence interval.
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Table 4
Multivariable mixed-effects Cox proportional hazards regression models in non-CPFE

patients and the two CPFE subgroups in the derivation IPF cohort.

m
[
3 95% Cl
=) Subgroup Baseline severity and PFTs changes models ~ C-index  p-value Hazard ratio —————————
@ Lower Upper
o
< 1-year FVC relative decline 0.821 3.02x10®  1.082 1052 1113
2 Binary 1-year FVC decline (5%) 0.805 1.09x10°5 3.824 2.104 6.953
c -
= Eotionts  Binary 1-year FVC decline (10%) 0811  496x107 4.261 2422 7.497
Q. -
ez g;;tléo’ 61 1-year DLco relative decline 0.803 0.0001 1.038 1.018 1.058
1% )
> Binary 1-year DLco decline (10%) 0.800 0.0010 2.764 1.511 5.055
(e
= Binary 1-year DLco decline (15%) 0.811 4.69x107 4.211 2407  7.366
o
% 1-year FVC relative decline 0.716 6.46x10°  1.051 1.026 1.077
[s¥) i Binary 1-year FVC decline (5%) 0.721 0.0001 3.000 1.705 5.279
> CPFE patients
% with Binary 1-year FVC decline (10%) 0.685 0.025 1.983 1.091  3.604
o emphysema <
= 10% (n=119, 1 -year DLco relative decline 0.727 0.0003 1.035 1.016 1.055
=t 63 deaths) - -
w Binary 1-year DLco decline (10%) 0.682 0.173 1.453 0.849  2.486
Binary 1-year DLco decline (15%) 0.696 0.017 1.979 1.131 3.464
1-year FVC relative decline 0.714 0.008 1.034 1.009 1.061
CPFE patients Binary 1-year FVC decline (5%) 0.714 0.016 1.868 1.126 3.100
with . . i 0
emphysema Binary 1-year FVC decline (10%) 0.715 0.002 2.540 1.421 4.539
21% R i i 5
(n=103, 73 1-year DLco relative decline 0.732 1.24x10 1.033 1.018 1.049
deaths) Binary 1-year DLco decline (1%) 0.703 0.058 1.619 0983  2.665
Binary 1-year DLco decline (15%) 0.732 7.61x10° 2.674 1.643 4.353

Multivariable mixed-effects Cox regression models were used to investigate associations with mortality for 1-year FVC decline and 1-year DLco
decline after adjusting for patient age, sex, smoking status (never versus ever), antifibrotic use (never versus ever) and baseline disease severity
estimated using DLco. Binary 1-year FVC decline uses 5% and 10% relative decline as thresholds, and binary 1-year DLco decline uses 10%

and 15% relative decline as thresholds. Separate centres/countries within the derivation cohort were modelled as multilevel with random effects
between centres/countries (a random intercept per centre/country). All models passed Schoenfeld residuals test. CPFE: combined pulmonary
fibrosis and emphysema; IPF: idiopathic pulmonary fibrosis; PFT: pulmonary function test; FVC: forced vital capacity; DLco: diffusing capacity of
the lung for carbon monoxide; C-index: concordance index; Cl: confidence interval.
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Table 5
Multivariable mixed-effects Cox proportional hazards regression models in non-CPFE

patients and the two CPFE subgroups in the replication IPF cohort.

m
[
3 95% Cl
=) Subgroup Baseline severity and PFTs changes models ~ C-index  p-value Hazard ratio —————
@ Lower  Upper
o
< 1-year FVC relative decline 0.823 8.65x10°  1.086 1042 1132
2 Binary 1-year FVC decline (5%) 0.827 0.002 2.719 1425 5187
§_ ,“é,"F”;f;tFi’anEts Binary 1-year FVC decline (10%) 0.817 0.004 2.733 1.374 5.437
o (n=108, 45 j : :
= deaths) 1 -year DLco relative decline 0.822 0.019 1.032 1.005 1.059
> Binary 1-year DLco decline (10%) 0.835 0.013 2.373 1.201 4.688
(e
= Binary 1-year DLco decline (15%) 0.835 0.006 2.693 1336  5.428
2 1-year FVC relative decline 0.754 0.001 1.055 1.022 1.089
§ Binary 1-year FVC decline (5%) 0.763 0.004 1.960 1246  3.083
S CPFE patients
= with Binary 1-year FVC decline (10%) 0.767 9.27x10° 2.704 1.642  4.453
b emphysema
=. <10% (n=159, 1 -year DLco relative decline 0.776 2.87x10°°  1.032 1.017 1.047
=t 83 deaths)
(7] Binary 1-year DLco decline (10%) 0.772 0.0005 2.252 1.424 3.561
Binary 1-year DLco decline (15%) 0.768 0.0001 2.781 1.659 4.661
1-year FVC relative decline 0.705 0.130 1.024 0.993 1.056
CPFE patients Binary 1-year FVC decline (5%) 0.689 0.707 1.105 0.656 1.863
with . .
emphysema Binary 1-year FVC decline (10%) 0.706 0.035 2.028 1.053 3.906
(Enl_"/f 5 1 -year DLco relative decline 0720  0.001 1.030 1012 1.049
70 deaths) Binary 1-year DLco decline (10%) 0.716 0.0004 2.672 1546 4617
Binary 1-year DLco decline (15%) 0.729 1.04x10°  3.883 2.124 7.097

Multivariable mixed-effects Cox regression models were used to investigate associations with mortality for 1-year FVC decline and 1-year DLco
decline after adjusting for patient age, sex, smoking status (never versus ever), antifibrotic use (never versus ever) and baseline disease severity
estimated using DLco. Binary 1-year FVC decline uses 5% and 10% relative decline as thresholds, and binary 1-year DLco decline uses 10%

and 15% relative decline as thresholds. Separate centres/countries within the replication cohort were modelled as multilevel with random effects
between centres/countries (a random intercept per centre/country). All models passed Schoenfeld residuals test. CPFE: combined pulmonary
fibrosis and emphysema; IPF: idiopathic pulmonary fibrosis; PFT: pulmonary function test; F\VC: forced vital capacity; DLco: diffusing capacity of
the lung for carbon monoxide; C-index: concordance index; CI: confidence interval.
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